
Abstract. Extremely localized molecular orbitals are
rigorously localized on only a preselected set of atoms
and do not have any tails outside the localization region.
The importance of these orbitals lies in their ability to be
transferred from one molecule to another one. A new
algorithm to determine extremely localized molecular
orbitals in the framework of the density functional the-
ory method is presented. This could also be a valuable
tool in the quantum mechanics/molecular mechanics
methodology where localized molecular orbitals are used
to describe covalent bonds across the frontier region.
The present approach is used to build up the electron
density of thymopentin, a polypeptide constituted by
five residues, starting from extremely localized molecular
orbitals determined on a set of model molecules. The
results obtained confirm good transferability properties
for these orbitals.
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Introduction

The methods of computational chemistry have been
applied so far to a variety of small and large molecules.
Even though a large body of results was obtained within
the Hartree–Fock (HF) approach, the importance to
take properly into account the effects of electronic cor-
relation was widely demonstrated. To this aim, several
methods have been developed and are routinely applied
using the more diffuse packages of computational
chemistry. Among them, the density functional theory

(DFT) [1] has attracted and continues to attract the
attention of theoreticians, as it represents a very pow-
erful method to introduce the correlation while retaining
quite limited computational requirements.

In the case of molecules of biological interest, how-
ever, such rigorous treatments would still be infeasible,
owing to their large dimensions. This difficulty can be
overcome by recognizing that the biological activity of
such systems is sometimes exerted in only a small region
of the molecule, the remaining part of it simply acting as
a perturbing moiety. It is then possible to describe
accurately, for example, at the quantum mechanics (QM)
level, only the more interesting region of the molecule
(e.g., the active site of a protein), and to treat the
remaining part of the molecule at a lower level of theory,
using, for example, molecular mechanics (MM). As the
former region can be involved in the disruption of some
bonds and in the formation of new ones, it is expected
that a considerable amount of electronic reorganization
can arise. This requires the use of methods which take
into account the electronic correlation, and the DFT
approach owing to its lower computational cost can be
an obvious choice in the treatment of these large systems.

A large variety of such QM/MM hybrid methods
have been developed [2, 3]. It should be observed that
these methods are far from trivial when the classical and
quantum regions of the system investigated are con-
nected by one or more covalent bonds. Among the most
promising methods which are not based on the use of
nonphysical atoms [4], we recall to the work of Thery
et al. [5], which has recently been generalized by Rivail’s
group [6, 7] and by Murphy et al.[8, 9].

These approaches describe the covalent bonds
connecting the QM and the MM regions through
localized molecular orbitals (LMOs), which can be
transferred from model molecules after a traditional
localization procedure [10, 11, 12]. An ab initio cal-
culation is then carried out on the QM region in the
presence of the frozen LMOs which describe the
connections to the MM region. In the ab initio cal-
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culation the MOs of the quantum region and the
LMOs are described using different basis sets that
share some common atomic functions; the traditional
ab initio algorithms were properly modified to account
for this. Applications to large systems have been al-
ready carried out, so demonstrating the power offered
by these methods [13].

Of course, these approaches rely on the concept of
transferability, which is well established in the chemical
view of a molecule, usually thought of as an assembly of
different functional groups each of them possessing well-
known properties.

We observe that LMOs are characterized by the
presence of tails outside the localized region, which are
necessary to preserve the orthogonality of the orbitals.
These tails cannot be transferred from the model mole-
cule to the target one, so they are annihilated by simply
zeroing the corresponding coefficients. This procedure is
therefore associated with a nonnegligible increase in the
energy value.

In our laboratory we have recently investigated
algorithms to determine extremely localized molecular
orbitals (ELMOs), i.e., orbitals which are rigorously
defined on only some molecular fragments and then
characterized by a complete absence of tails. ELMOs or
strictly localized molecular orbitals [14] or nonorthogo-
nal localized molecular orbitals [15] were introduced a
long time ago [16], but they are now the subject of re-
newed interest [17, 18, 19, 20]. The complete absence of
tails is an appealing feature of the ELMOs, as they can
be directly transferred without perturbation. They could
represent a useful tool in both the QM/MM methodol-
ogies which use localized orbitals to describe the frontier
regions and the methods which aim to assemble the
electronic structure of a large molecule using molecular
fragments defined on model molecules.

We have already tested the transferability of the
ELMOs [21] and we showed that electronic properties
of some ortho-substituted biphenyl molecules deter-
mined at the HF level are quite well reproduced by
optimizing only the ELMOs defined on the substituent
group, while keeping all the other ELMOs identical to
those of the unsubstituted biphenyl molecule. These
works suggest that the ELMOs provide good results
owing to the fact that they can be transferred without
deletion of tails.

In addition we have shown that if the transferred
ELMOs are subjected to a relaxation, it is possible to
obtain a close agreement with respect to the HF results.
This step can be carried out by performing just a single
self-consistent-field (SCF) iteration using the transferred
ELMOs. Alternatively, we have recently devised a pro-
cedure based on a valence bond approach, denoted
ELMO-VB [22], which permits us to take advantage of
the extremely localized nature of the orbitals to obtain
very compact wavefunctions, giving considerable
improvement in the results.

The results obtained so far using the ELMOs at the
restricted HF (RHF) level prompted us to extend this

approach to the DFT framework. In this paper we
present our first implementation of the method together
with a preliminary test calculation. This approach could
also be used to avoid a priori the basis set superposition
error in the determination of inter-molecular and
intramolecular interactions. In these cases it could be
considered as a useful tool to introduce electronic cor-
relation in the SCF for molecular interaction method
proposed by Gianinetti et al. [23] for the intermolecular
forces and in the ELMO method which has been already
used to study the intramolecular hydrogen bond [18] at
the RHF level.

Theory

In the framework of DFT [1], we can express the energy
of a system as

E q½ � ¼ Ts q½ � þ
Z

m rð Þq rð Þdr þ Exc q½ �

þ 1

2

ZZ
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where TS[q] is the kinetic energy of a noninteracting
electron gas in its ground state with electron density q(r),
v(r) is the external potential, i.e., the electrostatic field
generated by the nuclei, Exc[q] is the exchange–correla-
tion energy, 1

2

RR q rð Þq r0ð Þ
r�r0j j drdr0 is the classical Coulomb

description of the repulsion of the electrons, and the last
term is the nuclear repulsion energy.

The noninteracting electron gas in its ground state is
usually described by a Slater determinant built up using
N orthogonal Kohn–Sham orbitals (where 2N is the
number of electrons), i.e.,

q rð Þ ¼ 2
XN

i

/2
i rð Þ: ð2Þ

The Kohn–Sham orbitals are determined by an iter-
ative solution of the Kohn–Sham equations:

HKS/i ¼ � 1

2
r2 þ meff rð Þ

� �
/i rð Þ ¼ ei/i rð Þ; ð3Þ

where meff rð Þ ¼ m rð Þ þ
R q r0ð Þ

r�r0j j dr0 þ mxc rð Þ, with vxc rð Þ ¼
dExc q½ �=dq rð Þ.

We are now faced with the problem to determine
Kohn–Sham ELMOs, i.e., orbitals which are defined on
a preselected subset of atoms. The partitioning choice
depends on the successive use of the ELMOs, and it is
usually based on chemical ideas. So it is possible to de-
fine ELMOs which describe single bonds, lone pairs,
etc., or ELMOs which describe a larger set of atoms, for
example, a residue in a polypeptide molecule. Hence, in
general, we can consider dividing a molecule into nf
molecular fragments, each of them defined by its own

basis set, vi
l

� �mi

l¼1
, where i denotes the generic fragment.
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Each fragment can share some atomic basis functions
with other fragments. On the basis of the chemical
nature of the fragment, we will assign to each of them
2Ni electrons which will be described by Ni doubly
occupied ELMOs ui

a defined with the usual linear
combination of atomic orbitals (LCAOs) limited to the
AOs of their own fragment, i.e.,

ui
a ¼

Xmi

l

ci
lav

i
l or ui

a ¼
XM

l

ci
lavl;

where ci
la ¼ 0 if vl 62 ith fragment,

ð4Þ

where M is the total number of unique basis func-
tions.Of course each fragment will also be characterized
by mi)Ni virtual ELMOs. In order to determine the
ELMOs using the variation principle, we generalize a
procedure described in Refs. [24, 25]. It should be noted
that the set of all occupied ELMOs must be linearly
independent as they enter in the Slater determinant
describing the noninteracting electronic gas. As the
fragments usually share some atomic functions, Mtot ¼Pnf

i mi is, in general, greater than M so the set of virtual
orbitals of all fragments can present a linear dependence,
which must be correctly taken into account.

Let us indicate with C
(0) the matrix containing all the

coefficients of the occupied and virtual ELMOs for each
fragment; it will be a rectangular matrix of dimension
M·Mtot with the following structure:

C 0ð Þ ¼ Cocc
1 . . . Cocc

i . . . Cocc
nf Cvir

1 . . . Cvir
i . . . Cvir

nf

�� ��; ð5Þ

where Cocc
i =Cvir

i represent the occupied/virtual orbitals
of the ith fragment, respectively.

At the beginning, the C(0) matrix is built up using a
proper guess, usually the localized Kohn–Sham orbitals
obtained from the first iteration of a traditional DFT
calculation, followed by tail deletion and proper
renormalization. Owing to the extremely localized
nature of the orbitals, as expressed by Eq. (4), the C(0)

matrix is sparse and its orbitals are not orthogonal, so
it is not possible to express the electron density
through Eq. (2).

The procedure that we have implemented optimizes
cyclically the set of ELMOs of each fragment. Let us
consider the steps involved to optimize the ELMOs of
the ith fragment. Starting from the matrix C(0), we
assemble the matrix C(1) just reordering the orbitals
contained in C(0):

where Cocc
ið Þ =Cvir

ið Þ represent all the occupied/virtual
orbitals except those of the ith fragment to be optimized.

This matrix is then subjected to a Gram–Schmidt

orthogonalization, giving the matrix C GSð Þ ¼

~Cocc
ið Þ

~Cocc
i

~Cvir
i

~Cvir
ið Þ

���
���. As is well known, the Gram–

Schmidt orthogonalization keeps the first vector

unaltered, orthogonalizes the second on the first one,
then the third vector on the first one, and so on. If a
vector is a linear combination of the previous
orthogonalized vectors, it is annihilated by the proce-
dure.

Owing to the adopted sequence of the orbitals in the
C(1) matrix, a C(GS) matrix is obtained where

1. The first columns, ~Cocc
ið Þ

~Cocc
i , contain a new set of

orthogonal orbitals which are a mixture of only the

occupied orbitals Cocc
ið Þ Cocc

i , so the associated wavefunc-

tion is not changed. They allow us to assemble the
electron density using Eq. (2).

2. The central part, ~Cocc
i

~Cvir
i , contains the new set of

Gram–Schmidt orthogonalized occupied and virtual
orbitals of the fragment to be optimized; they define an
adequate space to be used for a proper projection of the
Kohn–Sham operator from the atomic basis to the
molecular basis (see later).

Of course the matrix C(GS) is a square matrix of order
M, so if Mtot>M some virtual orbitals are annihilated
from the orthogonalization step. In particular some
virtual orbitals of the ith fragment can also be eliminated
during this step. Let us indicate with mi¢ the number of
orbitals of the ith fragment that survive after the Gram–
Schmidt step (mi¢ £ mi).

Using the occupied orbitals contained in the C(GS)

matrix, ~Cocc
ið Þ

~Cocc
i , the density matrix and hence the

Kohn–Sham operator on the atomic basis functions,

FAO
KS , are obtained by using a traditional DFT package.

The Kohn–Sham matrix is then transformed on the

MO basis, FMO
KS , using the matrix C(GS):

FMO
KS ¼ C GSð ÞyFAO

KSC
GSð Þ:

The diagonal block of the FMO
KS matrix, labelled by

the orbitals ~Cocc
i

~Cvir
i of the ith fragment, FMO

KS ið Þ, is

selected. This is a square matrix of order mi¢. The

optimized orbitals of the ith fragment are now com-
puted by evaluating the eigenvectors CMO

i of the
FMO
KS ið Þ matrix, which are then transformed on the

atomic basis obtaining the rectangular (M ·mi¢) matrix
CAO

i . The new orbitals are so obtained in the
space defined by the orbitals ~Cocc

i
~Cvir

i which con-
tain contributions from the occupied orbitals of the

other fragments owing to the Gram–Schmidt step.
Hence the orbital coefficients of the matrix CAO

i do
not obey to the structure of the LCAOs indicated in
Eq. (4).

C 1ð Þ ¼ Cocc
1 . . . Cocc

i�1Cocc
iþ1 . . . Cocc

nf Cocc
i Cvir

i Cvir
1 . . . Cvir

i�1C
vir
iþ1 . . . Cvir

nf

�� �� ¼ Cocc
ið Þ Cocc

i Cvir
i Cvir

ið Þ

���
���;
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Anyway it is possible to obtain again a matrix satis-
fying the required constraints, through an appropriate
linear combination with the occupied orbitals of the
other fragments, Cocc

ið Þ , without energy change.
In order to get this result, the orbitals �ui

a defined by

the CAO
i matrix, �ui

a ¼
PM
l¼1

CAO
i

� �
lavl, are subjected to the

following transformation:

where the coefficients kb
j are determined in such a way

that

CAO
i

� �
la þ

Xnf

j ¼ 1

j 6¼ �i

XNj

b

kb
j cj

lb

0
BBBBB@

1
CCCCCA
¼ 0 if

vl 62 ith fragment:

The number of coefficients kb
j to be determined is

equal to the number of occupied ELMOs of the other
fragments, while there is a different equation for each
atomic function not belonging to the ith fragment. So
these equations represent an overdetermined system of
linear equations, which can be solved by means of the
singular value decomposition technique [26]. It should
be noted that the solution of this system has an exact
solution, as the ‘‘contamination’’ is due to only the
components of the occupied orbitals Cocc

ið Þ . At the end of
this procedure, the updated orbitals of the ith fragment
satisfy exactly to the constraints of Eq. (4).

The number of orbitals obtained for the ith fragment

is obviously equal to the dimension of the FMO
KS ið Þ ma-

trix, mi¢.
If mi¢ £ mi, it is necessary to restore the original

dimensionality of the space for the ith fragment. This
can be performed by constructing its orthogonal com-
plement, using either the atomic basis functions which
define the fragment or the starting (i.e., contained in the
C(0) matrix) complete set of occupied and virtual orbitals
of the same fragment. The optimization procedure is
then cyclically repeated for all the nf fragments until
convergence is reached, for which 10–20 iterations are
usually sufficient. At convergence the optimized occu-
pied orbitals of all the fragments are orthogonalized,
and the final electron density and energy are computed.

Of course the energy associated with the ELMO
wavefunction is higher than that obtained with a tra-
ditional DFT calculation where the orbitals are com-
pletely delocalized, as the number of variational
coefficients is largely reduced. The advantage offered
by the proposed procedure relies on the possibility to
have a set of orbitals that can now be easily trans-
ferred from one molecule to another. We also note

that if one or more fragments must be kept fixed, as
required in some QM/MM methods [6, 7, 8, 9], this
procedure can be still adopted by simply excluding
them by the optimization loop over the whole set of
fragments.

In order to perform the test calculations described in
this paper, we used the Gaussian 98 package [27] to
obtain the Kohn–Sham matrix on the AO basis, giving
as an input the appropriate density matrix.

Test calculations

The benzene and cyclobutadiene molecules

In order to test the convergence capabilities of the
present approach, we first applied it to the benzene and
cyclobutadiene molecules, which from our experience we
already know to be critical systems [17].

Using the geometries optimized at the RHF level with
the standard 6-31G basis set, we performed for both
molecules two ELMO calculations differing in the choice
of the molecular fragments.

In the first one we described the molecules using two
molecular fragments: the first fragment, describing all
the r electrons, which is defined using only the r atomic
functions, and the second one, describing the p elec-
trons, which is defined using only the p atomic functions.
Obviously in this case the ELMO wavefunction repro-
duces a traditional DFT calculation.

In the second localization scheme we adopted the
same definition for the r molecular frame, while the p
electrons were described using the p atomic functions of
only two adjacent carbon atoms for each pair of elec-
trons. For the benzene molecule, we realized a Kekulé
structure in this way.

The program was always able to obtain convergence
and the energy values are reported in Table 1. From the
values reported, we can have an estimate of the reso-

ui
a )

PM
l¼1

CAO
i

� �
lavl þ

Pnf
j ¼ 1
j 6¼ �i

PNj

b
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j u
j
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b
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j

PM
l
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lbvl

¼
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i

� �
la þ
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j ¼ 1
j 6¼ �i
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b
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0
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nance energy, which appears to be 86.5 kcal/mol for the
benzene molecule, to be compared with just 2.8 kcal/mol
for the cyclobutadiene molecule.

The thymopentin polypeptide

In order to investigate the transferability properties of
the ELMOs, we looked at the possibility to build up an
approximate DFT description of a little polypeptide
using molecular fragments determined on the constitu-
ent amino acids. This approach closely resembles the
LEGO method proposed by Walker and Mezey [28, 29],
which builds up the electron density of a polypeptide by
superimposing the electron densities computed for some
molecular fragments.

As a test molecule we considered the thymopentin
polypeptide, TP-5, which is constituted by the five resi-
dues of the active site of the thymopoietin hormone,
isolated from thymus [30]. TP-5 presents immunoregu-
latory effects in animals as in humans, and clinical
studies have also evidenced that TP-5 can restore the
immunological responsiveness of patient affected by
different diseases [31].

TP-5 is constituted by the following sequence of
amino acids: Arg–Lys–Asp–Val–Tyr. Using the geome-
try the residues adopt in thymopoietin, as recovered
from its crystal structure (Protein Data Bank entry
1H9E) [32], we performed a DFT calculation with the B-
LYP functional [33, 34] and the standard 6-31G basis
set, which will be considered as our reference. The
molecular fragments to be used for building up the
wavefunction of the target molecule were determined by
selecting appropriate model molecules (Fig. 1). For all
the fragments the corresponding Lewis structures were
used to determine the number of doubly occupied EL-
MOs.

The amino acid alanine with its C- and N-termini
protected by CH3NH and C(O)CH3 groups, respec-
tively, was chosen to describe the molecular fragments
which constitute the C- and N-termini of TP-5. In par-
ticular we performed an ELMO calculation using
molecular fragments defined by the atomic functions of

CH3NHC(O)C(a), C(a)NHC(O)CH3 and CH3C(a)H
units. The ELMOs obtained for the first two units were
then transferred to the TP-5 target molecule.

For each of the five amino acids (Ri=Arg, Lys, Asp,
Val, Tyr) we carried out an ELMO calculation on the
molecule CH3NHC(O)C(a)HRiNHC(O)CH3, which was
partitioned into the following molecular fragments:
C(a)HRi,CH3NHC(O)C(a) and C(a)NHC(O)CH3.
The first unit was then transferred for each of the five
different amino acids to the TP-5 molecule. Finally, in
order to describe the molecular fragment of the
peptidic region, we performed an ELMO calcula-
tion on the dialanine dipeptide, CH3NHC(O)-
C(a)(H)(CH3)NHC(O)C(a)(H)(CH3)NHC(O)CH3, using
the following molecular fragments: C(a)NHC(O)C(a),
CH3NHC(O)C(a)(H)(CH3), C(a)(H)(CH3)NHC(O)CH3,
where the first one was transferred into the different
regions of the TP-5 molecule to describe the corre-
sponding four peptidic regions.

All the calculations on the fragments were carried out
using the geometry that they adopt in the target poly-
peptide, in order to transfer the ELMOs without varia-
tions. In this way we assembled a set of ELMOs for the
TP-5 molecule starting from smaller fragments, and the
corresponding wavefunction will be denoted as ELMO-
Transf.

The extremely localized nature of the ELMOs pre-
vents, of course, a direct ‘‘charge transfer’’ between
different fragments. Anyway the different residues are
not electrically neutral as the ELMOs are not orthogo-
nal and so a partial charge transfer is allowed through
ELMOs of the nearest fragments. In order to allow a
greater electronic rearrangement, the transferred EL-
MOs can be relaxed, as described later.

The wavefunction ELMO-Transf was compared with
a conventional DFT calculation on the whole molecule.

Table 1. Energy values (atomic units). ELMO represents extremely
localized molecular orbital

Benzene

ELMO (delocalized p bonds) )232.083118
ELMO (localized p bonds) )231.945228
Cyclobutadiene

ELMO (delocalized p bonds) )154.563370
ELMO (localized p bonds) )154.558942
Thymopentin

ELMO-Transf )2,512.453636
ELMO-Rel(1) )2,512.781853
ELMO )2,512.836704
Density functional theory )2,513.015353

Fig. 1. The transferring scheme of the extremely localized molec-
ular orbitals (ELMOs) for the thymopentin polypeptide
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The energy difference between the two wavefunctions
(Table 1) amounts to 352.5 kcal/mol. This remarkable
difference has already been discussed [21, 22] and it is, of
course, due to the different number of the coefficients
which define the two wavefunctions. For the present
calculation, the DFT wavefunction is defined by 113,866
coefficients (variationally determined) while the ELMO-
Transf wavefunction is set up by only 31,435 coefficients
(determined on the molecular fragments).

Despite this large difference in the energy values, the
agreement between the electron densities is considerably
more favourable, as was evidenced by performing a
Stone analysis [35] on the two wavefunctions. The
standard deviations of the charges and of the higher
moments of the electron density with respect to the DFT
results are reported in Table 2. The comparison is quite
satisfactory considering that the ELMOs were deter-
mined on molecular fragments and simply transferred
without any change.

An obvious way to obtain better accuracy is to pro-
ceed in a relaxation of the transferred ELMOs by per-
forming, for example, just one or more optimization
cycles on the target molecule. The results obtained after
just one optimization step, ELMO-Rel(1), and when the
convergence on the target molecule is obtained (ELMO)
are reported in Tables 1 and 2. It is encouraging to see
that just one optimization cycle permits us to recover
86% of the energy with respect to the ELMO wave-
function with completely optimized molecular frag-
ments. Also the accuracy of the charges and the higher
moments is greatly increased.

The differences in the ELMO-Rel(1) charges with
respect to the full DFT calculation are plotted in Fig. 2
using a colour scale. An inspection of the figure indi-
cates, as expected, that the larger differences are princi-
pally located in the regions where the fragments overlap,
i.e., where a greater reorganization of the electronic
structure should arise. Anyway the overall charge dis-
tribution within the molecule has been largely repro-
duced.

This example clearly indicates that an approach
based on an ELMO strategy can be a valuable tool in
order to assemble the electron density of a large mole-

cule using smaller molecular models, in the spirit of the
LEGO approach [28, 29].

Conclusions

We have presented an approach to determine ELMOs
within the framework of the DFT method based on the
solution of the Kohn–Sham equations.

The ELMOs are orbitals which are characterized by a
priori elimination of the tails, so improving their trans-
ferability. The procedure devised optimizes the molecu-
lar fragments cyclically; hence, it is straightforward to
keep one or more fragments frozen at their initial guess.
The procedure could be used in the framework of the
QM/MM methods based on localized orbitals, close to
the LSCF strategy suggested by the Rivail’s group [5, 6,
7]. This will be the subject of a future paper.

The approach developed was used to assemble a
reasonable guess for the electron density of thymopen-
tin, a polypeptide constituted by five amino acids, by
transferring the ELMOs obtained on the constituent
amino acids. The number of coefficients which define the
ELMOs localized on the different molecular fragments
of the system reported is less than one third with respect
to the coefficients of the DFT calculation, and of course
this ratio will decrease on increasing the dimension of
the target molecule. Despite this, the electron density is
quite well reproduced just using the transferred ELMOs,
even if a partial relaxation appears to be important to
permit mutual interactions. This relaxation was realized
by a single iterative optimization step for each molecular
fragment, as just one cycle was sufficient to recover a
great percentage of energy with respect to an ELMO
calculation on the target molecule with variationally
determined molecular fragments. We are also studying
the possibility to introduce relaxation using a different
strategy [22], which takes into proper account the

Table 2. Standard deviations of the atomic moments (atomic
units) of the electron density according to the Stone analysis, with
respect to those obtained with the density functional theory
calculation

ELMO-Transf ELMO-Rel(1) ELMO

Charges 0.111 0.074 0.070
Dipole x 0.106 0.049 0.059
Dipole y 0.100 0.038 0.039
Dipole z 0.107 0.042 0.043
Quadrupole xx 0.256 0.152 0.148
Quadrupole yy 0.268 0.150 0.130
Quadrupole zz 0.399 0.146 0.142
Quadrupole xy 0.111 0.063 0.050
Quadrupole xz 0.132 0.069 0.047
Quadrupole yz 0.094 0.037 0.034

Fig. 2. Differences, plotted on a colour scale, in the charges
between the wavefunction ELMO-Rel(1) (see text) and the
traditional density functional theory calculation
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localized nature of the orbitals, as already reported in
previous studies [36, 37].
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